Карта сайта Kansoftware
НОВОСТИУСЛУГИРЕШЕНИЯКОНТАКТЫ
Разработка программного обеспечения

boost/fiber/unbounded_channel.hpp

Boost , ,

Boost C++ Libraries

...one of the most highly regarded and expertly designed C++ library projects in the world. Herb Sutter and Andrei Alexandrescu, C++ Coding Standards

boost/fiber/unbounded_channel.hpp

//          Copyright Oliver Kowalke 2013.
// Distributed under the Boost Software License, Version 1.0.
//    (See accompanying file LICENSE_1_0.txt or copy at
//          http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_FIBERS_UNBOUNDED_CHANNEL_H
#define BOOST_FIBERS_UNBOUNDED_CHANNEL_H
#include <atomic>
#include <algorithm>
#include <chrono>
#include <cstddef>
#include <deque>
#include <memory>
#include <mutex>
#include <utility>
#include <boost/config.hpp>
#include <boost/intrusive_ptr.hpp>
#include <boost/fiber/detail/config.hpp>
#include <boost/fiber/channel_op_status.hpp>
#include <boost/fiber/condition_variable.hpp>
#include <boost/fiber/detail/convert.hpp>
#include <boost/fiber/exceptions.hpp>
#include <boost/fiber/mutex.hpp>
#include <boost/fiber/operations.hpp>
#ifdef BOOST_HAS_ABI_HEADERS
#  include BOOST_ABI_PREFIX
#endif
namespace boost {
namespace fibers {
template< typename T,
          typename Allocator = std::allocator< T >
>
class unbounded_channel {
public:
    typedef T   value_type;
private:
    struct node {
        typedef intrusive_ptr< node >                   ptr_t;
        typedef typename std::allocator_traits< Allocator >::template rebind_alloc<
            node
        >                                               allocator_t;
        typedef std::allocator_traits< allocator_t >    allocator_traits_t;
#if ! defined(BOOST_FIBERS_NO_ATOMICS)
        std::atomic< std::size_t >  use_count{ 0 };
#else
        std::size_t                 use_count{ 0 };
#endif
        allocator_t                 alloc;
        T                           va;
        ptr_t                       nxt{};
        node( T const& t, allocator_t const& alloc_) noexcept :
            alloc{ alloc_ },
            va{ t } {
        }
        node( T && t, allocator_t const& alloc_) noexcept :
            alloc{ alloc_ },
            va{ std::move( t) } {
        }
        friend
        void intrusive_ptr_add_ref( node * p) noexcept {
            ++p->use_count;
        }
        friend
        void intrusive_ptr_release( node * p) noexcept {
            if ( 0 == --p->use_count) {
                allocator_t alloc( p->alloc);
                allocator_traits_t::destroy( alloc, p);
                allocator_traits_t::deallocate( alloc, p, 1);
            }
        }
    };
    using ptr_t = typename node::ptr_t;
    using allocator_t = typename node::allocator_t;
    using allocator_traits_t = typename node::allocator_traits_t;
    enum class queue_status {
        open = 0,
        closed
    };
    allocator_t         alloc_;
    queue_status        state_{ queue_status::open };
    ptr_t               head_{};
    ptr_t           *   tail_;
    mutable mutex       mtx_{};
    condition_variable  not_empty_cond_{};
    bool is_closed_() const noexcept {
        return queue_status::closed == state_;
    }
    void close_( std::unique_lock< mutex > & lk) noexcept {
        state_ = queue_status::closed;
        lk.unlock();
        not_empty_cond_.notify_all();
    }
    bool is_empty_() const noexcept {
        return ! head_;
    }
    channel_op_status push_( ptr_t new_node,
                             std::unique_lock< mutex > & lk) noexcept {
        if ( is_closed_() ) {
            return channel_op_status::closed;
        }
        return push_and_notify_( new_node, lk);
    }
    channel_op_status push_and_notify_( ptr_t new_node,
                                        std::unique_lock< mutex > & lk) noexcept {
        push_tail_( new_node);
        lk.unlock();
        not_empty_cond_.notify_one();
        return channel_op_status::success;
    }
    void push_tail_( ptr_t new_node) noexcept {
        * tail_ = new_node;
        tail_ = & new_node->nxt;
    }
    value_type value_pop_( std::unique_lock< mutex > & lk) {
        BOOST_ASSERT( ! is_empty_() );
        auto old_head = pop_head_();
        return std::move( old_head->va);
    }
    ptr_t pop_head_() noexcept {
        auto old_head = head_;
        head_ = old_head->nxt;
        if ( ! head_) {
            tail_ = & head_;
        }
        old_head->nxt.reset();
        return old_head;
    }
public:
    explicit unbounded_channel( Allocator const& alloc = Allocator() ) noexcept :
        alloc_{ alloc },
        tail_{ & head_ } {
    }
    unbounded_channel( unbounded_channel const&) = delete;
    unbounded_channel & operator=( unbounded_channel const&) = delete;
    void close() noexcept {
        std::unique_lock< mutex > lk( mtx_);
        close_( lk);
    }
    channel_op_status push( value_type const& va) {
        typename allocator_traits_t::pointer ptr{
            allocator_traits_t::allocate( alloc_, 1) };
        try {
            allocator_traits_t::construct( alloc_, ptr, va, alloc_);
        } catch (...) {
            allocator_traits_t::deallocate( alloc_, ptr, 1);
            throw;
        }
        std::unique_lock< mutex > lk( mtx_);
        return push_( { detail::convert( ptr) }, lk);
    }
    channel_op_status push( value_type && va) {
        typename allocator_traits_t::pointer ptr{
            allocator_traits_t::allocate( alloc_, 1) };
        try {
            allocator_traits_t::construct(
                    alloc_, ptr, std::move( va), alloc_);
        } catch (...) {
            allocator_traits_t::deallocate( alloc_, ptr, 1);
            throw;
        }
        std::unique_lock< mutex > lk( mtx_);
        return push_( { detail::convert( ptr) }, lk);
    }
    channel_op_status pop( value_type & va) {
        std::unique_lock< mutex > lk( mtx_);
        not_empty_cond_.wait( lk,
                              [this](){
                                return is_closed_() || ! is_empty_();
                              });
        if ( is_closed_() && is_empty_() ) {
            return channel_op_status::closed;
        }
        va = value_pop_( lk);
        return channel_op_status::success;
    }
    value_type value_pop() {
        std::unique_lock< mutex > lk( mtx_);
        not_empty_cond_.wait( lk,
                              [this](){
                                return is_closed_() || ! is_empty_();
                              });
        if ( is_closed_() && is_empty_() ) {
            throw fiber_error(
                    std::make_error_code( std::errc::operation_not_permitted),
                    "boost fiber: queue is closed");
        }
        return value_pop_( lk);
    }
    channel_op_status try_pop( value_type & va) {
        std::unique_lock< mutex > lk( mtx_);
        if ( is_closed_() && is_empty_() ) {
            // let other fibers run
            lk.unlock();
            this_fiber::yield();
            return channel_op_status::closed;
        }
        if ( is_empty_() ) {
            // let other fibers run
            lk.unlock();
            this_fiber::yield();
            return channel_op_status::empty;
        }
        va = value_pop_( lk);
        return channel_op_status::success;
    }
    template< typename Rep, typename Period >
    channel_op_status pop_wait_for( value_type & va,
                                    std::chrono::duration< Rep, Period > const& timeout_duration) {
        return pop_wait_until( va, std::chrono::steady_clock::now() + timeout_duration);
    }
    template< typename Clock, typename Duration >
    channel_op_status pop_wait_until( value_type & va,
                                      std::chrono::time_point< Clock, Duration > const& timeout_time) {
        std::unique_lock< mutex > lk( mtx_);
        if ( ! not_empty_cond_.wait_until( lk, timeout_time,
                                           [this](){
                                                 return is_closed_() || ! is_empty_();
                                           })) {
            return channel_op_status::timeout;
        }
        if ( is_closed_() && is_empty_() ) {
            return channel_op_status::closed;
        }
        va = value_pop_( lk);
        return channel_op_status::success;
    }
};
}}
#ifdef BOOST_HAS_ABI_HEADERS
#  include BOOST_ABI_SUFFIX
#endif
#endif // BOOST_FIBERS_UNBOUNDED_CHANNEL_H

Статья boost/fiber/unbounded_channel.hpp раздела может быть полезна для разработчиков на c++ и boost.




Материалы статей собраны из открытых источников, владелец сайта не претендует на авторство. Там где авторство установить не удалось, материал подаётся без имени автора. В случае если Вы считаете, что Ваши права нарушены, пожалуйста, свяжитесь с владельцем сайта.



:: Главная :: ::


реклама


©KANSoftWare (разработка программного обеспечения, создание программ, создание интерактивных сайтов), 2007
Top.Mail.Ru

Время компиляции файла: 2024-08-30 11:47:00
2025-07-05 13:29:32/0.0036180019378662/0