Карта сайта Kansoftware
НОВОСТИУСЛУГИРЕШЕНИЯКОНТАКТЫ
Разработка программного обеспечения

The Boost Multidimensional Array Library (Boost.MultiArray)

Boost , ,

Boost C++ Libraries

...one of the most highly regarded and expertly designed C++ library projects in the world. Herb Sutter and Andrei Alexandrescu, C++ Coding Standards


The Boost Multidimensional Array Library
(Boost.MultiArray)

Synopsis

Библиотека многомерных массивов Boost предоставляет шаблон класса для многомерных массивов, а также семантически эквивалентные адаптеры для массивов смежных данных. Классы в этой библиотеке реализуют общий интерфейс, формализованный как общая концепция программирования. Дизайн интерфейса соответствует прецеденту, установленному контейнерами стандартной библиотеки C++. Boost MultiArray является более эффективным и удобным способом выражения N-мерных массивов, чем существующие альтернативы (особенноstd::vector>формулировка N-мерных массивов). Доступ к массивам, предоставляемым библиотекой, может осуществляться с использованием знакомого синтаксиса нативных массивов C++. Доступны дополнительные функции, такие как изменение размера, изменение формы и создание просмотров (и описаны ниже).

Содержание

  1. Введение
  2. Короткий пример
  3. Многолучевые компоненты
  4. Конструкция и назначение
  5. Генераторы типа Array View и Subarray
  6. Определение размеров массива
  7. Доступ к элементам
  8. Создание образов
  9. Заказ на хранение
  10. Установка базы массива
  11. Изменение формы массива
  12. Размеры массива
  13. Концепция многолучевого луча
  14. Испытательные случаи
  15. Связанные работы
  16. Кредиты

Введение

Стандартная библиотека C++ предоставляет несколько общих контейнеров, но не предоставляет многомерных типов массивов.std::vectorшаблон класса может быть использован для реализации N-мерных массивов, например, для выражения 2-мерного массивадвойныхэлементов с использованием типаstd::vector>, но полученный интерфейс громоздкий и объем памяти может быть довольно высоким. Native C++ arrays (т.е.int arr

;Не очень хорошо взаимодействовать с C++. Стандартная библиотека, и они также теряют информацию на границах вызовов функций (в частности, степень последнего измерения). Наконец, динамически выделенный смежный блок элементов можно рассматривать как массив, хотя этот метод требует ручной бухгалтерии, которая подвержена ошибкам и запутывает намерение программиста.

Библиотека Boost MultiArray улучшает стандартные контейнеры C++ с универсальными многомерными абстракциями массивов. Он включает в себя общий шаблон класса массивов и нативные адаптеры массивов, которые поддерживают идиоматические операции массивов и взаимодействуют с контейнерами и алгоритмами стандартной библиотеки C++. Массивы имеют общий интерфейс, выраженный как общее программирование, с точки зрения которого могут быть реализованы общие алгоритмы массивов.

Этот документ предназначен для предоставления вводного руководства и руководства пользователя для самых основных и распространенных моделей использования компонентов MultiArray. Справочное руководствообеспечивает более полную и формальную документацию библиотечных функций.

Short Example

What follows is a brief example of the use of multi_array:
#include "boost/multi_array.hpp"
#include <cassert>
int 
main () {
  // Create a 3D array that is 3 x 4 x 2
  typedef boost::multi_array<double, 3> array_type;
  typedef array_type::index index;
  array_type A(boost::extents[3][4][2]);
  // Assign values to the elements
  int values = 0;
  for(index i = 0; i != 3; ++i) 
    for(index j = 0; j != 4; ++j)
      for(index k = 0; k != 2; ++k)
        A[i][j][k] = values++;
  // Verify values
  int verify = 0;
  for(index i = 0; i != 3; ++i) 
    for(index j = 0; j != 4; ++j)
      for(index k = 0; k != 2; ++k)
        assert(A[i][j][k] == verify++);
  return 0;
}

MultiArray Components

Boost.MultiArray's implementation (boost/multi_array.hpp) provides three user-level class templates:
  1. multi_array,
  2. multi_array_ref, and
  3. const_multi_array_ref
multi_array is a container template. When instantiated, it allocates space for the number of elements corresponding to the dimensions specified at construction time. A multi_array may also be default constructed and resized as needed.

multi_array_ref adapts an existing array of data to provide the multi_array interface. multi_array_ref does not own the data passed to it.

const_multi_array_ref is similar to multi_array_ref but guarantees that the contents of the array are immutable. It can thus wrap pointers of type T const*.

The three components exhibit very similar behavior. Aside from constructor parameters, multi_array and multi_array_ref export the same interface. const_multi_array_ref provides only the constness-preserving portions of the multi_array_ref interface.

Construction and Assignment

Each of the array types - multi_array, multi_array_ref, and const_multi_array_ref - provides a specialized set of constructors. For further information, consult their reference pages.

All of the non-const array types in this library provide assignment operatorsoperator=(). Each of the array types multi_array, multi_array_ref, subarray, and array_view can be assigned from any of the others, so long as their shapes match. The const variants, const_multi_array_ref, const_subarray, and const_array_view, can be the source of a copy to an array with matching shape. Assignment results in a deep (element by element) copy of the data contained within an array.

Array View and Subarray Type Generators

In some situations, the use of nested generators for array_view and subarray types is inconvenient. For example, inside a function template parameterized upon array type, the extra "template" keywords can be obfuscating. More likely though, some compilers cannot handle templates nested within template parameters. For this reason the type generators, subarray_gen, const_subarray_gen, array_view_gen, and const_array_view_gen are provided. Thus, the two typedefs in the following example result in the same type:
template <typename Array>
void my_function() {
  typedef typename Array::template array_view<3>::type view1_t;
  typedef typename boost::array_view_gen<Array,3>::type view2_t;
  // ...
}

Specifying Array Dimensions

When creating most of the Boost.MultiArray components, it is necessary to specify both the number of dimensions and the extent of each (boost::multi_array also provides a default constructor). Though the number of dimensions is always specified as a template parameter, two separate mechanisms have been provided to specify the extent of each.

The first method involves passing a Collection of extents to a constructor, most commonly a boost::array. The constructor will retrieve the beginning iterator from the container and retrieve N elements, corresponding to extents for the N dimensions. This is useful for writing dimension-independent code.

Example

  typedef boost::multi_array<double, 3> array_type;
  boost::array<array_type::index, 3> shape = {{ 3, 4, 2 }};
  array_type A(shape);

The second method involves passing the constructor an extent_gen object, specifying the matrix dimensions. The extent_gen type is defined in the multi_array_types namespace and as a member of every array type, but by default, the library constructs a global extent_gen object boost::extents. In case of concern about memory used by these objects, defining BOOST_MULTI_ARRAY_NO_GENERATORS before including the library header inhibits its construction.

Example

  typedef boost::multi_array<double, 3> array_type;
  array_type A(boost::extents[3][4][2]);

Accessing Elements

The Boost.MultiArray components provide two ways of accessing specific elements within a container. The first uses the traditional C array notation, provided by operator[].

Example

  typedef boost::multi_array<double, 3> array_type;
  array_type A(boost::extents[3][4][2]);
  A[0][0][0] = 3.14;
  assert(A[0][0][0] == 3.14);

The second method involves passing a Collection of indices to operator(). N indices will be retrieved from the Collection for the N dimensions of the container.

Example

  typedef boost::multi_array<double, 3> array_type;
  array_type A(boost::extents[3][4][2]);
  boost::array<array_type::index,3> idx = {{0,0,0}};
  A(idx) = 3.14;
  assert(A(idx) == 3.14);
This can be useful for writing dimension-independent code, and under some compilers may yield higher performance than operator[].

By default, both of the above element access methods perform range checking. If a supplied index is out of the range defined for an array, an assertion will abort the program. To disable range checking (for performance reasons in production releases), define the BOOST_DISABLE_ASSERTS preprocessor macro prior to including multi_array.hpp in your application.

Creating Views

Boost.MultiArray provides the facilities for creating a sub-view of an already existing array component. It allows you to create a sub-view that retains the same number of dimensions as the original array or one that has less dimensions than the original as well.

Sub-view creation occurs by placing a call to operator[], passing it an index_gen type. The index_gen is populated by passing index_range objects to its operator[]. The index_range and index_gen types are defined in the multi_array_types namespace and as nested members of every array type. Similar to boost::extents, the library by default constructs the object boost::indices. You can suppress this object by defining BOOST_MULTI_ARRAY_NO_GENERATORS before including the library header. A simple sub-view creation example follows.

Example

  // myarray = 2 x 3 x 4
  //
  // array_view dims: [base,bound) (dimension striding default = 1)
  // dim 0: [0,2) 
  // dim 1: [1,3) 
  // dim 2: [0,4) (strided by 2), 
  // 
  typedef boost::multi_array_types::index_range range;
  // OR typedef array_type::index_range range;
  array_type::array_view<3>::type myview =
    myarray[ boost::indices[range(0,2)][range(1,3)][range(0,4,2)] ];
  for (array_type::index i = 0; i != 2; ++i)
    for (array_type::index j = 0; j != 2; ++j)
      for (array_type::index k = 0; k != 2; ++k) 
	assert(myview[i][j][k] == myarray[i][j+1][k*2]);

By passing an integral value to the index_gen, one may create a subview with fewer dimensions than the original array component (also called slicing).

Example

  // myarray = 2 x 3 x 4
  //
  // array_view dims:
  // [base,stride,bound)
  // [0,1,2), 1, [0,2,4) 
  // 
  typedef boost::multi_array_types::index_range range;
  array_type::index_gen indices;
  array_type::array_view<2>::type myview =
    myarray[ indices[range(0,2)][1][range(0,4,2)] ];
  for (array_type::index i = 0; i != 2; ++i)
    for (array_type::index j = 0; j != 2; ++j)
	assert(myview[i][j] == myarray[i][1][j*2]);

More on index_range

The index_range type provides several methods of specifying ranges for subview generation. Here are a few range instantiations that specify the same range.

Example

  // [base,stride,bound)
  // [0,2,4) 
  typedef boost::multi_array_types::index_range range;
  range a_range;
  a_range = range(0,4,2);
  a_range = range().start(0).finish(4).stride(2);
  a_range = range().start(0).stride(2).finish(4);
  a_range = 0 <= range().stride(2) < 4;
  a_range = 0 <= range().stride(2) <= 3;
An index_range object passed to a slicing operation will inherit its start and/or finish value from the array being sliced if you do not supply one. This conveniently prevents you from having to know the bounds of the array dimension in certain cases. For example, the default-constructed range will take the full extent of the dimension it is used to specify.

Example

  typedef boost::multi_array_types::index_range range;
  range a_range;
  // All elements in this dimension
  a_range = range(); 
  // indices i where 3 <= i
  a_range = range().start(3) 
  a_range = 3 <= range();
  a_range = 2 < range();
  // indices i where i < 7
  a_range = range().finish(7)
  a_range = range() < 7;
  a_range = range() <= 6;
The following example slicing operations exhibit some of the alternatives shown above
    // take all of dimension 1
    // take i < 5 for dimension 2
    // take 4 <= j <= 7 for dimension 3 with stride 2
    myarray[ boost::indices[range()][range() < 5 ][4 <= range().stride(2) <= 7] ];

Storage Ordering

Each array class provides constructors that accept a storage ordering parameter. This is most useful when interfacing with legacy codes that require an ordering different from standard C, such as FORTRAN. The possibilities are c_storage_order, fortran_storage_order, and general_storage_order.

c_storage_order, which is the default, will store elements in memory in the same order as a C array would, that is, the dimensions are stored from last to first.

fortran_storage_order will store elements in memory in the same order as FORTRAN would: from the first dimension to the last. Note that with use of this parameter, the array indices will remain zero-based.

Example

  typedef boost::multi_array<double,3> array_type;
  array_type A(boost::extents[3][4][2],boost::fortran_storage_order()); 
  call_fortran_function(A.data());

general_storage_order allows one to customize both the order in which dimensions are stored in memory and whether dimensions are stored in ascending or descending order.

Example

  typedef boost::general_storage_order<3> storage;
  typedef boost::multi_array<int,3> array_type;
 
  // Store last dimension, then first, then middle
  array_type::size_type ordering[] = {2,0,1};
  // Store the first dimension(dimension 0) in descending order 
  bool ascending[] = {false,true,true};
  array_type A(extents[3][4][2],storage(ordering,ascending)); 

Setting The Array Base

In some situations, it may be inconvenient or awkward to use an array that is zero-based. the Boost.MultiArray components provide two facilities for changing the bases of an array. One may specify a pair of range values, with the extent_range type, to the extent_gen constructor in order to set the base value.

Example

  typedef boost::multi_array<double, 3> array_type;
  typedef boost::multi_array_types::extent_range range;
  // OR typedef array_type::extent_range range;
  array_type::extent_gen extents;
 
  // dimension 0: 0-based
  // dimension 1: 1-based
  // dimension 2: -1 - based
  array_type A(extents[2][range(1,4)][range(-1,3)]);

An alternative is to first construct the array normally then reset the bases. To set all bases to the same value, use the reindex member function, passing it a single new index value.

Example

  typedef boost::multi_array<double, 3> array_type;
  array_type::extent_gen extents;
 
  array_type A(extents[2][3][4]);
  // change to 1-based
  A.reindex(1)

An alternative is to set each base separately using the reindex member function, passing it a Collection of index bases.

Example

  typedef boost::multi_array<double, 3> array_type;
  array_type::extent_gen extents;
 
  // dimension 0: 0-based
  // dimension 1: 1-based
  // dimension 2: (-1)-based
  array_type A(extents[2][3][4]);
  boost::array<array_type::index,ndims> bases = {{0, 1, -1}};       
  A.reindex(bases);

Changing an Array's Shape

The Boost.MultiArray arrays provide a reshape operation. While the number of dimensions must remain the same, the shape of the array may change so long as the total number of elements contained remains the same.

Example

  typedef boost::multi_array<double, 3> array_type;
  array_type::extent_gen extents;
  array_type A(extents[2][3][4]);
  boost::array<array_type::index,ndims> dims = {{4, 3, 2}};       
  A.reshape(dims);

Note that reshaping an array does not affect the indexing.

Resizing an Array

The boost::multi_array class provides an element-preserving resize operation. The number of dimensions must remain the same, but the extent of each dimension may be increased and decreased as desired. When an array is made strictly larger, the existing elements will be preserved by copying them into the new underlying memory and subsequently destructing the elements in the old underlying memory. Any new elements in the array are default constructed. However, if the new array size shrinks some of the dimensions, some elements will no longer be available.

Example

  typedef boost::multi_array<int, 3> array_type;
  array_type::extent_gen extents;
  array_type A(extents[3][3][3]);
  A[0][0][0] = 4;
  A[2][2][2] = 5;
  A.resize(extents[2][3][4]);
  assert(A[0][0][0] == 4);
  // A[2][2][2] is no longer valid.

MultiArray Concept

Boost.MultiArray defines and uses the MultiArray concept. It specifies an interface for N-dimensional containers.

Test Cases

Boost.MultiArray comes with a suite of test cases meant to exercise the features and semantics of the library. A description of the test cases can be found here.

Related Work

boost::array and std::vector are one-dimensional containers of user data. Both manage their own memory. std::valarray is a low-level C++ Standard Library component meant to provide portable high performance for numerical applications. Blitz++ is an array library developed by Todd Veldhuizen. It uses advanced C++ techniques to provide near-Fortran performance for array-based numerical applications. array_traits is a beta library, formerly distributed with Boost, that provides a means to create iterators over native C++ arrays. This library is analogous to boost::array in that it augments C style N-dimensional arrays, as boost::array does for C one-dimensional arrays.

Credits

  • Ronald Garcia is the primary author of the library.
  • Jeremy Siek helped with the library and provided a sounding board for ideas, advice, and assistance porting to Microsoft Visual C++.
  • Giovanni Bavestrelli provided an early implementation of an N-dimensional array which inspired feedback from the Boost mailing list members. Some design decisions in this work were based upon this implementation and the comments it elicited.
  • Todd Veldhuizen wrote Blitz++, which inspired some aspects of this design. In addition, he supplied feedback on the design and implementation of the library.
  • Jeremiah Willcock provided feedback on the implementation and design of the library and some suggestions for features.
  • Beman Dawes helped immensely with porting the library to Microsoft Windows compilers.

Ronald Garcia
Last modified: Tue Feb 7 17:15:50 EST 2006

Статья The Boost Multidimensional Array Library (Boost.MultiArray) раздела может быть полезна для разработчиков на c++ и boost.




Материалы статей собраны из открытых источников, владелец сайта не претендует на авторство. Там где авторство установить не удалось, материал подаётся без имени автора. В случае если Вы считаете, что Ваши права нарушены, пожалуйста, свяжитесь с владельцем сайта.



:: Главная :: ::


реклама


©KANSoftWare (разработка программного обеспечения, создание программ, создание интерактивных сайтов), 2007
Top.Mail.Ru

Время компиляции файла: 2024-08-30 11:47:00
2025-05-19 23:53:36/0.010832071304321/1